
ABSTRACT

SHAH, ARPAN PRAMOD. Scalable authorization in role-based access control using

negative permissions and remote authorization (Under the direction of Dr. Gregory

T. Byrd).

Administration of access control is a major issue in large-scale computer systems.

Many such computer systems proposed over recent years aim at reducing the effort

required to govern access. Role-based access control (RBAC) systems are a huge

benefit to this point. They reduce the tasks of an administrator or authorities when

users take on different roles in an organization and need to be assigned different

access rights or privileges based on these roles. RBAC is a very expressive and flexible

access control mechanism that makes it possible to have security policies based on

the principle of least privilege, static and dynamic separation of duties, conflicts

between roles and permissions, and many more. This research proposes the use of

negative permissions and remote authorization for improving the scalability of an

RBAC implementation.

We discuss how negative permissions would fit in the proposed RBAC model. The

thesis describes a mechanism to implement such an RBAC system utilizing negative

authorizations. Our implementation is an extension of the Java 2 security architec-

ture to support negative authorizations. We provide support for hierarchy of roles

and de-confliction of positive and negative authorizations using the most specific takes

precedence model. Future extensions to the model and optimizations to the imple-

mented algorithm are proposed.

Another aspect of this thesis is the application of above RBAC model in a dis-

tributed environment utilizing a remote authorization management system. A remote

authorization mechanism is appropriate in many client-server systems where there is

control over the resources at an intermediate communication stack or a middleware

component enforces the access rules. In our client-server architecture, an authoriza-



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2003 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2003 to 00-00-2003  

4. TITLE AND SUBTITLE 
Scalable Authorization in Role-Based Access Control Using Negative
Permissions and Remote Authorization 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
North Carolina State University,Department of Electrical and Computer 
Engineering,Raleigh,NC,27695 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
The original document contains color images. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

78 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



tion server uses an RBAC system to control access to resources under its domain,

and the enforcement of access rules is provided by a security overlay on privileged

resources.

We address how our negative permissions and remote authorization schemes aug-

ment RBAC scalability. We provide the requisite abstraction through UML and

architecture diagrams for implementation in other languages and systems. A com-

parison of this work to other related research done in the RBAC domain is carried

out, and future work in this area is discussed.



SCALABLE AUTHORIZATION IN ROLE-BASED ACCESS
CONTROL USING NEGATIVE PERMISSIONS AND REMOTE

AUTHORIZATION

by

Arpan P. Shah

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial satisfaction of the
requirements for the Degree of

Masters of Science

Department of Electrical and Computer Engineering

Raleigh

2003

Approved By:

Dr. Gregory T. Byrd
Chair of Advisory Committee

Dr. Douglas S. Reeves Dr. Peng Ning



ii

To

Mom and Dad



iii

Biography

Arpan Shah was born on the 10th of December, 1978 in the city of Mumbai, India. He

completed his Bachelors of Engineering in the Electronics discipline from D.J. Sanghvi

College of Engineering, Mumbai. Soon after, he worked for a year as a Software

Engineer at one of India’s most successful software services organization, Infosys

Technologies Limited. He joined the Masters program in Computer Networking at

North Carolina State University in the fall of 2001 and has been working under the

guidance of Dr. Gregory Byrd as a Research Assistant in the field of access control for

distributed environments since spring 2002. His research and development interests

are network & information security, and wireless networking.



iv

Acknowledgements

I would like to express my sincere appreciation to my advisor, Dr. Gregory Byrd,

for his guidance and constant support. He has always kept confidence in me and

his critical comments have significantly improved the content of this thesis and the

maturity of research performed.

I am grateful to my committee members, Dr. Douglas Reeves and Dr. Peng Ning,

for their valuable comments and suggestions.

Special thanks to my colleague Rong Wang from MCNC-RDI with whom i col-

laborated during the first semester in my research. My initial work with her laid the

foundation for this thesis. Thanks to other colleagues in the Yalta project group:

Praveen Cheruvu, T.J. Smith, Xiaoyong Wu, Krithiga Thangavelu, and Hongjie Xin

for making this a rewarding team experience.

Thanks to Mr. Michael Warres from Sun Microsystems for being prompt and

meticulous in our email correspondence.

I want to express my gratitude to my mom, Sharmistha Shah, for her unwavering

faith in me, and my dad, Pramod Shah, for serving as a role-model in many of the

roles i have performed to date.

This work was supported by the DARPA Information Technology Office (ITO),

under contract F30602-00-C-0068.



v

Contents

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 6
2.1 Access Control Models . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Discretionary Access Control (DAC) . . . . . . . . . . . . . . 8
2.1.2 Mandatory Access Control (MAC) . . . . . . . . . . . . . . . 11
2.1.3 Role-based Access Control (RBAC) . . . . . . . . . . . . . . . 13

2.1.3.1 RBAC Levels . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Java Security Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Java Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Java Authentication and Authorization Services (JAAS) . . . 18
2.2.3 Java Security Classes and API . . . . . . . . . . . . . . . . . . 19

2.3 Dynamic Policy Provider . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Access Check Algorithm . . . . . . . . . . . . . . . . . . . . . 23

2.4 Distributed Computing Technology in Java . . . . . . . . . . . . . . . 25
2.4.1 RMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.2 Jini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Implementation Infrastructure (Yalta) . . . . . . . . . . . . . . . . . 27

3 Implementation 29
3.1 Requirements for Access Control In Yalta . . . . . . . . . . . . . . . . 29
3.2 Extending the RBAC model . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Negative Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



vi

3.3.2 Permission De-confliction . . . . . . . . . . . . . . . . . . . . . 35
3.3.3 Class diagram of Dynamic Policy Provider . . . . . . . . . . . 36
3.3.4 Local Enforcement Framework . . . . . . . . . . . . . . . . . . 39

3.4 Remote Authorization . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.3 Architecture Scalability . . . . . . . . . . . . . . . . . . . . . . 45
3.4.4 Policy Administration . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Implementation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.1 Merits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Related Work 54

5 Conclusion 60
5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Bibliography 63



vii

List of Figures

2.1 Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Access control lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Discretionary access control . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Trojan Horse problem . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Role-based access control . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 RBAC levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 RMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 Yalta infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Class diagram of DynamicPolicyProvider . . . . . . . . . . . . . . . 37
3.2 Class diagram of PolicyEngine . . . . . . . . . . . . . . . . . . . . . 38
3.3 Local enforcement framework . . . . . . . . . . . . . . . . . . . . . . 40
3.4 ISO-10181-3 access control framework . . . . . . . . . . . . . . . . . . 41
3.5 Remote authorization design . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Remote authorization architecture . . . . . . . . . . . . . . . . . . . . 44
3.7 Scalable authorization: Hierarchy support . . . . . . . . . . . . . . . 46
3.8 Scalable authorization: Multi-domain support . . . . . . . . . . . . . 47
3.9 Policy administration interface . . . . . . . . . . . . . . . . . . . . . . 49
3.10 Policy logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



viii

List of Tables

3.1 Hierarchical principal-value table . . . . . . . . . . . . . . . . . . . . 36



1

Chapter 1

Introduction

Role-based access control (RBAC) [14] concepts have been utilized in computer

systems for more than two decades by implementing group-based access control (Unix,

Windows NT), and security policies based on the Chinese wall model for separation of

duties [8]. RBAC simplifies the administration of access control by granting permis-

sions to users on their roles and not on their identities. RBAC provides an abstraction

layer between the users and their permissions in the form of roles. As permissions

granted to a user are generally in direct correlation with the roles they perform, the

role-to-permission mapping remains relatively static compared to a direct user-to-

permission mapping. If the user changes roles, only the roles mapped to the user

need to be changed and the permissions pertaining to new roles will be automati-

cally applicable to this user. In some situations, this mechanism might become too

restrictive and inflexible as some permissions might not directly correspond to their

roles. This is solved traditionally by including the user identity as one of the roles

of the user, for example, user accounts in Unix. For example, this would allow a

particular co-founder of an organization to perform certain functions on the basis of

this authority in the organization. In this approach, access is granted if the user is

allowed to access the resource based on either the identity, or one or more roles.

A related issue in RBAC is that of exceptions in role-based access. One of the



2

mechanisms to achieve these exceptions is to implement negative authorizations in

the access control mechanism [42]. Negative authorizations can serve as over-riding

cases to positive authorizations, or one can implement a de-confliction strategy to

come out with a correct decision in case of simultaneous presence of positive and

negative authorizations. A system that overrides positive authorizations by negative

ones compromises the utilization of exceptions. A certain de-confliction strategy and

implementation, which ensures that the security requirements of the system are met

and yet is flexible for utilizing exception cases, serves a dual purpose.

1.1 Study

Over the last 10 years, role-based access control has emerged as the most favored

system for access control. It simplifies access control administration to a large extent

and minimizes errors due to human elements in configuration of the access control

mechanism. However, the RBAC model has only recently matured enough to be

considered for standardization [15]. We are yet to see widely accepted commercial

implementations based on these RBAC standards proposed.

One of the most important benefits of RBAC is the simplification of administra-

tion associated with managing access in a moderate to large scale system. Exceptions

to role based access control have not received significant attention in the research com-

munity. Exceptions tend to violate the basic principle of RBAC, that is, access based

on roles. The research community considers constraints [2] as a suitable mechanism to

achieve this objective. However, constraints should be used to provide pre-conditions

to be satisfied before the access tuple checks in the system and are too complex for

utilizing them for exception cases.

What needs to be pondered is that constraints serve as pre-conditions in the ac-

cess check and that utilizing negative authorizations is the most natural mechanism to

provide fine-tuned role-based access. Utilizing negative authorizations to always over-



3

ride positive authorizations is also not a flexible way of specifying policies. A more

flexible approach is needed which takes into account the inheritance relationship be-

tween roles and gives appropriate preference to the positive or negative authorization

based on these inheritance relationships.

A scalable system maintains the performance of a system in face of higher through-

put that might be obtained by adding more resources. RBAC systems address the

scalability issue of older access control models. A role-based system is inherently scal-

able in some aspects, due to a concise representation of access rights in the system.

They cater to the inheritance of access rights found in real world scenarios and help

remove redundancy in specification and issuance of access rights.

1.2 Implementation

This research has been complemented by a prototype implementation over the

Java language security mechanism [20]. Java has a well-defined access control mech-

anism and security specification. Being a platform-independent language, an imple-

mentation in Java would be available to be used over all platforms over which Java

is available. We utilize the user-centric access control mechanism [47] in Java and

extend it to include negative authorizations.

We modified Java’s security mechanism by changing a few authorization classes

from the language. We also modified the Overture [48] toolkit, which utilizes classes

that allows administrators to dynamically change the access control tuples at run-

time.

We implemented this authorization in a distributed environment secured by a

middleware framework [43]. The middleware framework is a security overlay that

provides security services to applications. Our framework for authorization enables

this middleware to consistently enforce the security functionalities expected from it.

Administration of access control is also simplified in such a system. There are fewer



4

points of contact for administration and enforcement of security functionalities.

We believe this remote authorization framework supports our case of augmenting

negative authorizations to the RBAC model. In absence of negative authorizations,

exceptions cannot be easily expressed. Many positive authorizations would have to

be issued by the authority instead of a few negative authorizations to individuals and

one positive authorization for the containing group. This would mean a large set of

policy statements or tuples issued by the policy authority, causing a large number of

entries in the security enforcement mechanism utilized by the authorization server.

This would, in turn, mean a larger time to search for the correct tuple matching the

request. For a large system, many such requests would be sent by clients to receive

the policy decision and hence, an efficient search is required to save time. This search

time, and policy issuance time and bandwidth can be saved by utilizing negative

authorizations, as they reduce the number of policy tuples and their search time.

1.3 Outline

Chapter 2 provides the background information required for appreciation of this

thesis. We provide a background of some security models and how RBAC can be

accepted as a general model for access control. We discuss the various levels of

RBAC, each higher level representing an increased sophistication of implementation.

Section 2.2 describes the security mechanism in Java and how it can be used to imple-

ment RBAC. Also explained are the relevant Java APIs (Application Programmer’s

Interfaces) for utilizing the security mechanism implemented by Java.

Chapter 3 describes our implementation. Section 3.3 explains how we extended

the Java API to include negative authorizations with no modification required to any

existing application code. Section 3.4 explains the implementation of a remote au-

thorization scheme to cater to access control requests. We show how this is possible

in a manner that is transparent to applications. We demonstrate the flexibility of



5

our mechanism by configuring the system to implement local policy enforcement or

utilize the remote authorization server without any code level changes. We discuss

the scalability of our remote authorization architecture and our policy distribution

mechanism that guarantees confidentiality and data origin and content integrity. Sec-

tion 3.5 presents the merits and limitations of this work.

Chapter 4 compares our work with prior work done in the area of negative autho-

rizations and constraints. We contrast some earlier work done in remote authorization

for role-based access control with our mechanism.

Chapter 5 concludes the thesis and suggests some directions for future work.



6

Chapter 2

Background

Increased dependence of humans on computer systems mean high damage if their

vulnerability is exploited. This damage can range from passive threats, like eaves-

dropping on some confidential data, to active threats, like identity-theft, where a

malicious user poses as an authorized user and then carries out transactions on that

authorized user’s account. As vulnerable these computer systems are, they have to

be protected from being abused by unauthorized users. Various models are used to

categorize these protection mechanisms and to help us develop an approach to prevent

or counter-attack these threats.

Fundamentally, these protection mechanisms fall into three broad categories: Con-

fidentiality, Integrity, and Availability. Maintaining confidentiality is to prevent dis-

closure of information to unauthorized people. Integrity is concerned with correct

detection of the origin of information and the ability to guarantee that information

being shared was not modified in transit. Availability pertains to the presence of

information or a service whenever a legitimate user needs to access it. A security

overlay is a layer of these security services built on top of lower level services.

Any model helps us formulate the rules that conforming implementations should

provide. A model gives us an abstraction for further high-level development and leads

to a robust implementation. A security model is such a specification that details how



7

a particular system achieves the three fundamental security goals of confidentiality,

integrity and availability. Many models in computer systems target a particular kind

of security goal and provide a solution for that particular goal.

2.1 Access Control Models

Access control is a means to provide confidentiality in a system by granting or

denying the right to access data or perform some action (method). Access control

models aim to provide solutions to the confidentiality threats in a system. Tradi-

tionally, these access control models have been based either on a mapping of what

resources users can access or on how flow of information between various objects in the

system is controlled. These models, known as discretionary access control (DAC) and

mandatory access control (MAC) respectively, are discussed in subsequent sections.

Resources governed by access control are termed privileged resources because ac-

cessing them needs some privileges on the part of users. In an object-oriented system

like Java, resources are modeled as objects having some data and operations to be per-

formed on this data. Privileged objects can only be accessed by users having certain

privileges sufficient to access them. Each user has a set of credentials, which enables

that user to be granted appropriate privileges. This requires that the requester first be

identified and validated as a legitimate one(Authentication) and then the appropriate

decision taken to grant or deny access(Authorization). By performing authentication,

we extract the credentials possessed by a user and try to prevent illegitimate use

of resources by under-privileged users. These credentials are granted in the form of

private and/or public credentials and are attached to a principal. A user can have

more than one set of credentials for different contexts, and he can present one or more

sets of these credentials representing one or more principals for accessing a resource.

This collective set of principals along with the credentials is known as a Subject in

literature. A subject can be considered to be either a user or a program running on



8

behalf of the user. Since authorization decision is based on this set of principals and

their credentials, we say that a subject is the unit of access control. To summarize,

access control is a mechanism to prevent privileged operations on protected objects

from unauthorized subjects.

Access control can also be used in an audit trail to provide accountability in the

system. This is done by documenting the access of objects by a particular subject

and recording what operations were performed.

Role-based access control is a recent addition to the traditional discretionary and

mandatory access control models and has received significant attention in research.

Next, we discuss these access control models individually.

2.1.1 Discretionary Access Control (DAC)

Discretionary access control [36] has traditionally been used by operating systems

and relational database systems. In systems conforming to the DAC model, usually a

system administrator sets the initial privileges of each user, based on the user’s roles

and needs and the policies of the organization. Each user, in turn, has the discretion to

grant operations to other users on the objects that belong to this user. Access control

is generally user-based, though one can have variations such as group-based access

control provided in systems based on Unix and Windows NT operating systems. A

DAC system is modeled in the form of an access matrix, which is a two-dimensional

matrix with subjects presented as rows and objects as columns.

Authorization information can be placed with the subjects in a capability-based

system or with the objects in an access control list model. An example of a capability-

based system is Kerberos [29]. Capabilities take the form of tokens that are required

to access a privileged resource and these tokens can be easily copied or delegated.

Figure 2.1 shows an example of some capabilities that users might possess for access-

ing privileged resources. In order to be useful, capabilities must not be forgeable.

Capabilities also offer a better review of access privileges of subjects than the access



9

Set of users with their capabilities

Alice and her capabilities

/ foo : write, read

/tmp : write, read

/bar : write

Bob and his capabilities

/ foo : execute

/tmp : write, read

/bar : read

Figure 2.1: Capabilities

control list (ACL) model used in Unix based operating systems.

ACL is a list, typically present at each protected resource, that stores which

subjects are allowed to access its information or perform an operation. Hence, ACLs

offer a better review of per object access control rather than per subject access control.

Figure 2.2 shows an example of an ACL present at a privileged resource for access

control.

ACLs are more common in a closed system like an operating system, whereas

capabilities are traditionally preferred in some distributed systems like an organization

intranet. Figure 2.3 shows an example of an access control matrix where the subjects

are shown as rows and objects as columns in a two-dimensional matrix. Access to

privileged resources is restricted by a protection mechanism that bases its decision on

a discretionary access control mechanism (which is an access control list in this case).



10

Access Control List: Stored with the Privileged Resource

Owner

Alice

Bob

Dir

/foo

/bar

/tmp anyuser

Permission

Owner: write, read,

Group: execute
Owner: read

Group: write
Group: write, read

Group: anyuser

Alice Bob

Figure 2.2: Access control lists

Set of Users

Protection Mechanism

Alice

Privileged Resource

Access Control List

User /foo /bar

alice write
bob read

Bob

Figure 2.3: Discretionary access control



11

2.1.2 Mandatory Access Control (MAC)

Discretionary access controls are not sufficient to control flow of information from

one object to another. They have no control on what information can be copied

between objects [37]. This problem becomes more subtle when a program executing

on behalf of one of the trusted users tries to maliciously leak information from a

privileged resource accessible to the user. This kind of subverting of security is known

in literature as the Trojan Horse attack. Mandatory access control is a mechanism

to counter such attacks.

Mandatory access control is concerned with the control of flow of information from

one object in a system to another. The notion of object in MAC encompasses the

notion of object and subject used in DAC models. In this system, each object has a

security classification known as a label. This label is a security classification for objects

and security clearance for subjects. The label determines whether one object is able to

access another object and what flow of information is allowed between these objects.

Bell and LaPadula formalized this approach of mandatory access control [5]. The

central idea in this approach is to utilize discretionary and mandatory access control

to enforce these information flow policies. This acts as a two-tier security approach

wherein subjects need to have discretionary rights over the objects in addition to

mandatory rights. Subjects do not have any control over the mandatory rights.

Rights are determined by their security label and the label of the object they are

trying to access.

Figure 2.4 shows how mandatory access control techniques are adequate at enforc-

ing flow policies for access control. Alice tries to execute a malicious program written

by bob. The program executes with Alice’s privileges and hence the security clearance

of the program is Secret. The program does the intended work that Alice expects it

to be done. However, along with that, it reads /foo directory files and writes them

to /bar directory. In absence of MAC, Bob is allowed to read these /bar directory

files, and so he will be able to read those files even though he does not have the direct



12

Alice
(Label: Secret)

Executes

Malicious Program written
by Bob

(Trojan Horse)

Program reads on

Behalf of Alice

Program writes on

Beha lf  of  Alice

/foo
Directory

files

/bar
Directory

files

File System with
Discretionary Access

Control

Alice: read, write
Bob: -

Alice: write
Bob:read

Bob
(Label: UnClassified )

Bob unable to read Secret dataMAC lattice

Secret

UnClassified

Figure 2.4: Trojan Horse problem

permission to read the file in /foo directory. However, if a MAC system is used along

with the DAC mechanism, Bob would not be able to read the file written by Alice’s

program, as it will be written with the security label Secret. Thus, problems due to

such Trojan Horse programs are prevented by utilizing a MAC system.

MAC models are further specified into MAC models for confidentiality, integrity,

or composite models, depending on whether the flow model intends to provide confi-

dentiality, integrity, or both. In a MAC system, access is permitted to a subject only

when the information flow is to an object whose label is dominated by the subject’s

label. Which label dominates another is governed by the security policy in effect which

can cater to confidentiality, integrity or both. In the MAC confidentiality model for

files, if a user’s label dominates that of the file then the user will be able to read the

file as information flows from the file to the user. A MAC model is implemented in

many military environments and in other systems containing highly sensitive data.



13

2.1.3 Role-based Access Control (RBAC)

Unlike identity-based DAC models, access control in an RBAC system is based on

one or more roles that a user performs. RBAC models provide a significant benefit

to the administration of access control because users are granted access to resources

based on particular roles they perform in the organization. Roles are assigned to

users, and permissions are assigned to roles. Thus, roles can be viewed as providing

an intermediate layer for access control that groups users dynamically according to

their functions in the organization. The most important benefit of a role-based system

is its ease of administration. Even if a user’s role changes in the organization, the

only change required for access control purposes is the allocation of the user to that

new role. Permissions to the users are implicitly assigned. The newly assigned roles

contain these permissions.

RBAC is a more general mechanism than DAC or MAC. RBAC can be configured

to provide DAC or MAC support as it can embody a particular security policy for

implementation [32]. To configure RBAC to a DAC implementation, a set of admin-

istrative roles is required. One administrative role is for the owner of a privileged

resource. Other administrative roles are pertaining to users to whom the owner may

grant privileges for the resource. Besides the administrative roles, one role is required

per privileged resource for specifying what actions are permissible on the resource.

Configuring RBAC to a MAC implementation requires that the security labels be

identified as roles in the system and the information flow conditions regarding the

label domination be specified as constraints in the model. Constraints act as pre-

conditions before any resource access and enable us to specify more complex policies

which cannot be implemented by DAC or MAC.

Figure 2.5 shows what happens when a user tries to access a privileged resource

governed by an RBAC system. The first step is authentication of the user to determine

identity of the user. Typically RBAC systems implement some form of a database

which stores the roles that a user is in or asks the user to present security credentials



14

Role Based Access Control System

Authentication

Session
Communication

Alice

Action ‘A’ on Resource Y

1

Identity to Role mapping
&

Session Establishment

2

Privileged
Resource

X

Privileged
Resource

Z

Privileged
Resource

Y

Access Control List based on
Roles

Roles table

Figure 2.5: Role-based access control

to determine which roles the user wants to be activated for the current access. These

roles remain activated for the session, depending on what session semantics the RBAC

system employs. The database that stores the access privileges is not stored on the

basis of user identity, but the roles that user is in. This mechanism allows ease in

administration and a rich set of policies to be implemented via sophisticated RBAC

techniques.

2.1.3.1 RBAC Levels

RBAC models have been qualified into four increasingly sophisticated levels which

enable researchers and developers to compare their systems with this reference [38].

RBAC0 is the base model in this reference, which defines different entities in the

overall model. As shown in Figure 2.6, RBAC0 consists of users, roles, permissions,

and sessions. The permissions are always positive and can apply to single objects or

many. Also present in the model are the user-role and role-permission assignment

relations. Both the relations are many-to-many. This means that a user can belong



15

RBAC 0
user-role

assignment
role-permission

assignment
session management

RBAC 2 RBAC 1

RBAC 3

User-role and role
permission Constraints

Role-
hierarchies

Constraints to role-hierarchies
and private roles

Figure 2.6: RBAC levels

to many roles and a role can have many users. Similarly, a role can have many

permissions, and the same permission can be assigned to many roles. Sessions are

established by users when they activate one or more roles to perform some privileged

operations. Each session is associated with a single user. However, a single user might

have multiple sessions open at the same time, depending on the security policy of the

organization.

RBAC1 introduces the concept of role hierarchies to the RBAC0 model. They

leverage a very important structural heritage of roles: inclusion of junior roles into

senior roles. Junior roles are the ones that are less powerful than the senior roles.

Senior roles inherit all the permissions of the junior roles, thereby removing redun-

dancy in role-permission assignments and simplifying administration of access control

rights. Further concepts such as depth of inheritance and private sub-hierarchies are

also introduced, which help us map this model to the real world scenario.

RBAC2 introduces the concept of constraints to the RBAC0 model. Constraints

are a mechanism that help an organization lay out a higher level policy that has to

be honored before every access. Constraints can apply to user-role, role-permission

assignments and other factors such as time criteria to be followed before every access.

An important constraint used to prevent abuse of authority is the constraint on roles

to be mutually exclusive. This is related to the principle of separation of duties [18].

A similar constraint on mutually exclusive permissions also supports this principle



16

of separation of duties for permissions. Constraints act as prerequisites on roles and

permissions that any subject has to pass in order to be granted the requested role /

permission.

Access control constraints [2] can also be used to cater to exception cases. Con-

straints, however, are typically used as pre-conditions for access to be granted to

any role and are implemented via a separate mechanism. Thus, constraints are not

added to any access control rules or tuples. Instead, a separate table that has to be

checked before each access. Utilizing constraints for access control purposes would

require that these constraints be added to any tuple that has an exception case with

it. Such constraints would require a complicated parser and are not implemented by

any existing access control mechanisms to our knowledge.

RBAC3 subsumes the RBAC1 and RBAC2 approaches and also defines additional

constraints such as those on role hierarchies and private roles. Private roles are roles

that do not inherit the permissions assigned to their junior roles.

A parallel set of levels have been also introduced for administration of an RBAC

model [14]. These models are simpler than the corresponding RBAC models and a

lower level administrative model can be used to administer a higher RBAC model.

These administrative models modify the user assignments, permission assignments,

role hierarchy relations, and constraints. However, for a small organization, a single

administrator can directly take care of access control using RBAC instead of using

an administrative model for control.

In this era of Internet and enterprise applications, RBAC implementations would

typically be applied along with other techniques such as trust management and digital

rights management for a comprehensive protection mechanism [33]. A programming

language such as Java or other platforms such as operating systems and relational

databases would typically implement security primitives to utilize them.



17

2.2 Java Security Mechanism

As a programming language frequently used over distributed platforms like the

Internet, one of the highest priorities of Java has been to provide strong security fea-

tures. Java has strong security features to protect code and control what a code can

access or execute via techniques such as byte code verification, strong type-checking,

and embedded security checks in system classes [20]. The Java 2 architecture se-

curity [19] has evolved from the sandbox model, which either completely trusted

the code (inside the sandbox) or distrusted it (outside the sandbox), to a more fine

grained approach wherein custom security managers control what a particular code

can access or execute. The latest Java standard edition development kit [47] (J2SE)

includes Java Cryptography Extension (JCE), Java Secure Sockets Extension (JSSE),

and Java Authentication and Authorization Services (JAAS). JCE is an extension of

the Java Cryptography Architecture (JCA) aiming to provide more robust imple-

mentation of security protocols for supporting confidentiality and integrity. JSSE is

a framework and an implementation supporting Secure Sockets Layer (SSL) and its

IETF counterpart Transport Layer Security (TLS). SSL and TLS are the de facto

standards on web security, providing point-to-point confidentiality and integrity [12].

JAAS is a framework for authentication and authorization useful in multi-user envi-

ronments. These frameworks aim to provide security services with minimal security

code embedded in the application.

2.2.1 Java Policy

In the default implementation provided by J2SE, a static system-wide policy ob-

ject that is loaded at runtime from a policy file controls access to privileged resources

like files, sockets, etc. The policy file contains all the permissions that are granted

to specific locations from where the source is downloaded. This location is known

as a codesource, and the Java run-time environment loads these permissions in the



18

policy object. This is based on the premise that a user downloading code from dif-

ferent codesources would associate different privileges to the code depending on trust

worthiness of the location.

An example of such a permission is given below.

grant codebase "http://url.com", {
permission java.io.FilePermission "/foo/-", "read,write";

};

The above statement in the policy file would grant read and write permissions to

any file in the /foo directory or any sub-directory, provided the code is downloaded

from http://url.com.

In addition to such permissions, J2SE now supports granting permissions not only

to codesources, but also to specific principals. These principal specific permissions

can be granted access to resources based on the credentials presented during a session

as mentioned in Section 2.1.3. This functionality is provided by the JAAS mechanism

and is discussed in the next section.

2.2.2 Java Authentication and Authorization Services

(JAAS)

For a multi-user environment like an enterprise application or a public Internet

terminal, it becomes essential to base access control not on the location (codesource)

from where the service was requested, but on who runs the code. This was the pri-

mary motivation that led to the development of JAAS. Now an integrated component

of J2SE, JAAS enables authentication of users and making an authorization decision

based on their credentials, thereby providing user-centric access control. User au-

thentication in JAAS is performed in a pluggable fashion and hence application code

for authentication operations are independent of the underlying authentication mech-

anism. JAAS effectively takes the Java 2 security architecture one step forward by



19

providing user-centric access control as compared to the code-centric access control

approach provided traditionally in Java.

Authentication can be done by developing modules for all authentication technolo-

gies such as Kerberos, username-password pair, etc. Authorization decision is based

on the credentials that are collected from the user during authentication. These

credentials take the form of different principals collectively represented by a subject

which is explained in Section 2.1. JAAS conforms to the access control security model

where authentication and authorization is based on subject having a set of principals

having credentials.

Thus, Java now provides a unified mechanism for access control based on users,

location of the code, and the context of the security manager.

A typical JAAS based permission grant in the J2SE policy file looks like this:

grant codeBase "foo.bar", principal foo.Principal "John" {
permission java.io.FilePermission "/tmp/*", "read,write";

};

The above statement in the policy file would grant read and write permissions on

any files residing directly inside the /tmp directory to ‘bar’ class file in ‘foo’ package

running on behalf of a subject containing the principal ‘John’. Here ‘John’ represents

an instance of class ‘Principal’ in the ‘foo’ package.

2.2.3 Java Security Classes and API

Here we explain the Java security classes to help the reader better understand the

security check performed by Java and the data structures these classes utilize to per-

form a security check. Java security mechanism is activated at run-time by installing

a SecurityManager that acts as a gateway for all permission checking. It resolves

the security checks to the current AccessController which has a snapshot of the

current AccessControlContext in which they have to be performed. Without acti-

vating a SecurityManager, none of the access checks will be executed and all access



20

will be granted in the system. Each AccessControlContext keeps a mapping of all

the threads currently running within its context specified by CodeSource, Principal,

and ClassLoader together grouped into a ProtectionDomain. A ClassLoader loads

classes and makes them available to the Java run-time. When a ClassLoader loads a

class, it associates this class with a Permission set granted to that class. These per-

missions are obtained from a Policy object that acts like a database of permissions.

In the default Java implementation, this policy is loaded at run-time by reading a file

into the Policy object. This file contains all permissions to be loaded into the system

on startup for privileged resources. Each privileged resource typically has its own im-

plementation of the Permission interface. For example, java.io.FilePermission

is a Permission class used to protect file operations. Note that in all access checks,

the security check is carried out against all the associated access control contexts of

the executing thread. This means that when an application thread tries to access

any resource, multiple checks will be performed with access control contexts varying

from the application context to the Java system context. The final access check is

with respect to the Java run-time, which is fully trusted.

There are several ways in which authorization checks are performed in Java, de-

pending on the practical requirements of a system [4]. The authorization check models

in J2SE version 1.4 are as follows:

1. Access based on the ProtectionDomain set of the current thread. This method

is the most frequently used one and is called when a protected resource calls

SecurityManager.checkPermission() for associating the ProtectionDomain

associated with that resource by the AccessController of the current thread.

For each access control context of the current thread, the functional stack is

typically as follows:

SecurityManager.checkPermission(somePermission)

AccessController.checkPermission(somePermission)

//ProtectionDomain now bound to the thread



21

AccessControlContext.checkPermission(somePermission)

2. Access based on the ProtectionDomain of the doPrivileged caller. This

method is typically used when a class is trusted to perform an action safely and

securely. The access check in this mechanism pertains to ProtectionDomains

only associated with the class that called doPrivileged() or below it in the

stack. The functional stack is as follows:

AccessController.doPrivileged(somePermission)

AccessController.checkPermission(somePermission)

//ProtectionDomain now bound to the thread

AccessControlContext.checkPermission(somePermission)

3. Access based on the ProtectionDomain of another thread. This is typi-

cally used in a system when a proxy object has to perform the action re-

quested by a user. For example, in a client-server system, the server would

typically use this call by passing the context of the client. The server

would call AccessControlContext.checkPermission(somePermission) with

the AccessControlContext of the client in this case.

4. Access based on the Subject identity. This is the access mechanism that is

user-centric and is used in applications that require access control based not

only on the codesource, but also on who is performing the action. This is

done by calling Subject.doAs() or Subject.doAsPrivileged() by passing the

current subject, the PrivilegedAction to be performed, and the access con-

trol context if the call is doAsPrivileged(). Subject.doAsPrivileged() be-

haves similar to Subject.doAs() , except that instead of retrieving the current

Thread’s AccessControlContext, it uses the provided AccessControlContext.

If the provided AccessControlContext is null, this method instantiates a

new AccessControlContext with an empty collection of ProtectionDomains.

This is used where a particular class is trusted to perform a dangerous action



22

safely [4]. One can think of this call as providing a similar functionality to setuid

in Unix and Impersonation in Windows [11]. In Java, this would be useful in a

client-server environment wherein the server would extract the client’s subject

and perform the operation by passing the client’s AccessControlContext.

Subject.doAs(subject, privilegedAction)

privilegedAction.run()

SecurityManager.checkPermission(permission)

//Subject now bound to context of thread

AccessController.checkPermission()

AccessControlContext.checkPermission()

//Subject information taken into account

We utilized the access mechanism based on the Subject executing the method.

This was because, we wanted to utilize the user-centric access control provided by Java

to implement a role-based access control system utilizing negative authorizations.

2.3 Dynamic Policy Provider

The Java policy API provides a pluggable mechanism to build custom policy

providers. While J2SE 1.4 does not provide dynamic granting of permissions at

run-time, one can build on top of the APIs provided by Java to have such an im-

plementation. One such implementation is the DynamicPolicyProvider class by

the Overture [48] toolkit. The DynamicPolicyProvider extends the static policy

in J2SE to include dynamic permissions for principals. DynamicPolicyProvider

has multiple SubPolicy objects, depending on the ClassLoader that loads priv-

ileged classes. This implies that resources that base their access control on

the same ClassLoader will have a specific SubPolicy. Each SubPolicy stores

the permissions using a DomainPermission that contains a Principal set and a

PermissionCollection which stores the permissions that are granted to these prin-

cipals. The SubPolicy keeps a Hashtable of such DomainPermissions with the



23

corresponding ProtectionDomain as the keys. When these DomainPermissions are

initialized, they inherit all the permissions appropriate to their ProtectionDomain

from the SubPolicy’s basePolicy Object. This basePolicy Object is similar to

what one would get on loading a static policy file in J2SE 1.4. When dynamic per-

missions are granted, the granted permissions are added to a Grant object based on

the ClassLoader of the Permission class.

DynamicPolicyProvider takes a lazy-update approach, in which the grants are

stored according to Set of Principals. Whenever a user tries to access a privi-

leged resource it provides its Principals, which are a part of the running thread.

The AccessController of the thread then queries the current SubPolicy for the

ProtectionDomain that these Principals lie in and creates a new one if not al-

ready existing. If a ProtectionDomain already existed, then the SubPolicy checks

in the corresponding DomainPermissions object to see if the PermissionCollection

present implies the resource access permission. Whenever a new permission is entered

into Policy, it is linked to all the matching ProtectionDomains.

The above mechanism thus provides a caching mechanism for the policy checks,

thereby decreasing the access check time. DynamicPolicyProvider also provides

for a review of Permissions associated with the ProtectionDomains via the

getPermissions() method.

2.3.1 Access Check Algorithm

Following is the access check algorithm that Java security mechanism follows for

Subjects that try to access privileged resources.

• Application tries to access a privileged resource.

• The resource has implemented a privileged operation and has a se-

curity check embedded via the call Subject.doAs (Subject subject,

PrivilegedExceptionAction action).



24

• This invokes the corresponding AccessController.doPrivileged

(PrivilegedAction action, AccessControlContext context).

• Since action is a PrivilegedAction, this calls the current

AccessController.checkPermission(Permission perm, Object

context).

• This calls the current thread’s AccessControlContext.checkPermission

(Permission perm).

• This calls the appropriate ProtectionDomain.implies(Permission

permission). If the permissions inside this ProtectionDomain are static, the

permissions reside in the ProtectionDomain itself and an exception is thrown

if access is not granted. If the permissions are not static, then the current

Policy is consulted.

• If DynamicPolicyProvider is installed as the current Policy, this invokes

DynamicPolicyProvider.implies(ProtectionDomain domain, Permission

permission).

• This invokes the SubPolicy.implies(ProtectionDomain pd, Permission

p).

• This invokes the appropriate DomainPermissions.implies (Permission p).

DomainPermissions maps the current Permissions available to the specified

Principals, and hence this method checks the PermissionCollection object.

• This checks the PermissionCollection.implies(Permission p) method.

• For all matching Permission objects inside this PermissionCollection

object, each checks whether the Permission is granted or not by the

Permission.implies(Permission p) method. This last call returns with ei-

ther true or false, indicating whether the Subject was privileged to performed



25

the PrivilegedAction. If a Permission is not allowed, the invoked method

returns with an Exception to indicate that the action is not allowed.

We shall see in Section 3.3, how we modified the DynamicPolicyProvider to

include a parallel set of data structures for an access control list that stores nega-

tive authorizations in addition to positive authorizations. The UML diagram of the

DynamicPolicyProvider will also indicate the removal of the caching mechanism, as

this could mean more processing to update or invalidate the whole cache whenever a

new authorization is added to DynamicPolicyProvider.

2.4 Distributed Computing Technology in Java

The above section introduced some security classes to provide an overview of the

Java security mechanism and how access checks are made against the policy. This

study would help the reader better understand our negative authorizations scheme.

Next, we introduce two technologies in Java that make distributed computing easier.

These technologies were extensively utilized by our remote authorization scheme.

2.4.1 RMI

The Java Remote Method Invocation (RMI) [44] utilizes a client-server model

of distributed computing and provides for communication between remote programs

written in the Java programming language. RMI allows an object running in one Java

Virtual Machine (JVM) to invoke methods on an object running in another JVM.

Services provide their interfaces to clients, and clients call the methods defined in the

interfaces. To make this network communication transparent to the underlying service

and client implementation, RMI uses the Client-Dispatcher-Server design pattern

where the dispatcher is actually a Distributed-dispatcher pattern. Figure 2.7 shows

the communication taking place in an RMI based client-server interaction. The client-

side and server-side proxy classes perform the task of marshalling and unmarshalling



26

Client Server
Client
Proxy
(Stub)

Server
Proxy

(Skeleton)
RMI Transport

Service Interface

Figure 2.7: RMI

objects that are sent between the virtual machines for communication. Marshalling

and unmarshalling are required for data to be sent over the wire for communication.

Marshalling is storing the state of an object to a suitable form that can be sent over

the wire and unmarshalled at the other side to get the same state of the object that

was sent.

2.4.2 Jini

Jini [46] is a programming model that provides the various services and API

required for building and deploying distributed systems. Jini utilizes RMI mechanisms

and builds upon them to provide lookup services, discovery protocol, leases, event

mechanisms, and transaction support amongst other services to manage distributed

systems. While RMI’s client interacts with the client side service proxy (Stub), a Jini

client need not necessarily be a stub and can be the service object itself. Besides this,

Jini provides a much more expressive mechanism to register and discover services;

it provides a discovery service to enable clients to find services without knowing the

location a priori.

We utilized a distributed system that used Jini and RMI for distributed comput-

ing. This distributed system was protected by the security services provided by an



27

Figure 2.8: Yalta infrastructure

overlay service, called Yalta [9]. The next section discusses this infrastructure.

2.5 Implementation Infrastructure (Yalta)

Yalta is a security overlay service build for dynamic distributed environments

such as coalitions between countries for war-time data sharing. For the prototype

implementation, Yalta overlay is built on top of a distributed shared memory archi-

tecture provided by JavaSpaces [45]. We built on top of the available confidentiality

and integrity services provided by Yalta to include access control mechanism into the

overlay. This overlay provides a secure, scalable and reliable platform for information

sharing by providing confidentiality, integrity, authentication and access control for

distributed services. Figure 2.8 illustrates the infrastructure provided by the over-

lay. The trust management services are handled by Certificate Authorities (CA),

and Certificate Revocation Notification (CRN) hierarchies and are intrusion tolerant

and scalable. The CA signs the certificate request from the PKI space, which is the



28

coalition infrastructure JavaSpace used to get certificate signing requests by the coali-

tion members. These signed certificates are distributed through the PKI space, and

the distribution hierarchy of CRN agents interact with application space to provide

certificate revocation notifications through Certificate Revocation Lists (CRLs). The

application space is also a JavaSpace with the Yalta security overlay mechanism.

The infrastructure is based on Java distributed computing technology such as RMI

and Jini. Confidentiality services are provided by unicast security mechanisms uti-

lizing RMI communication over SSL protocol, and multicast security is provided by

secure group communication mechanism using Secure Spread [3]. Thus, confidential-

ity, integrity and authentication are provided by the trust management infrastructure,

RMI over SSL, and secure spread. Access control was another important requirement

for this overlay. Requirements for such a mechanism are explained in Section 3.1.



29

Chapter 3

Implementation

3.1 Requirements for Access Control In Yalta

Access control provided by JAAS is not sufficient for open, distributed environ-

ments. Such environments require access control privileges to change dynamically

when the trust between participating members or the number of participating mem-

bers changes. This requires use of dynamic permissions provided by Overture [48].

It also requires the use of sophisticated techniques like role-based access control. For

the prototype implementation, we have not focused on how a role is derived. This

could be done by mechanisms such as a role attribute assigned in identity certificates

of users or in separate attribute certificates distributed through another hierarchy.

We have embedded the role information inside the identity certificate for simplicity.

This allows us to focus on providing negative authorizations as a feature in an RBAC

system. We modified Overture’s DynamicPolicyProvider class to include revocation

of earlier granted permissions and to support negative authorizations.

The application space, as shown in Figure 2.8, is also built on the JavaSpace shared

memory architecture. This means that the security overlay has control over resources

in the application space and can embed security mechanisms in the application space.

Thus, we could utilize access checking locally in the application space or remotely



30

by implementing policy services. A local access check mechanism would require the

access control policy to be enforced locally at each application space. Hence, we would

require either a mechanism to either propagate this policy over all application spaces

or an administrator per application space who would enforce the policies to the space.

However, a more convenient and scalable mechanism would be to implement a policy

service that is queried whenever any application tries to perform an operation on the

application space. This requires implementing a policy service and a mechanism to

query this service by the application space. This policy service should be reliable,

scalable, and fault tolerant, in accordance with the other components in the overlay.

Thus, policy enforcement must be carried out only in these policy service components

and only authentication would be performed locally by the application space. This

mechanism has several benefits:

• No complex policy distribution hierarchy is required.

• Accidental or intentional abuse of access control policy by local authorities can

be prevented or minimized.

• A remote access control decision service can make the architecture scalable for

large number of privileged resources.

To summarize, the requirements for an access control system built for Yalta are:

• Dynamic granting and revocation of rights.

• A denial mechanism for flexible and concise policy representation as discussed

in Chapter 1.

• A remote access control decision service that is secure, reliable, scalable and

fault tolerant.



31

• An administrative interface that can be applied at the policy enforcement point

irrespective of whether the enforcement is at remote authorization server or at

the local resources.

We describe the implementation of a system that meets these requirements in

Sections 3.3 and 3.4.

3.2 Extending the RBAC model

Access control policies are best expressed by retaining the natural way people ex-

press the access control required for a system, and this provides easier management of

the system. These policies can naturally be expressed in terms of positive and nega-

tive authorizations, based on what the organization wants to let users access and what

it wants to prevent them from accessing. Negative authorization policies can also be

used to temporarily remove access rights from subjects if the need rises, although

this same need can be addressed by revoking an earlier granted right. Many oper-

ating systems have traditionally supported negative authorizations such as Windows

NT/2000, with the first matching access control element deciding whether access is

granted or denied [11].

Negative authorizations can be used for providing exceptions in access control. In

a certain organization, assume that all employees except contract professionals should

have access to the company’s new project proposals. Without negative authorizations,

these can only be achieved by specifying positive authorization to all roles which are

in the same branch as the contract professional roles and no authorization for the

contract professional roles. However, by utilizing negative authorizations, this can be

implemented in a concise manner by specifying positive authorizations to the most

junior role and negative rights only to the contract professional role. This also means

that any new role that will be added to the system will automatically inherit the

most junior role’s positive authorization, and would be beneficial in cases where this



32

is the expected behavior.

Negative authorizations can also be very helpful in case of incremental updates

to the policy. For example, suppose that an organization traditionally allows every

employee, permanent or contract based, to access its new project proposals. Suppose

that the organization has in all about hundred roles for permanent employees and

about five roles for contract employees. Now suppose a new policy is passed that only

permanent employees should be allowed to access new proposal data. In absence of

negative authorizations, the earlier positive authorization will have to be retracted

and many new positive permissions will have to be instead added, depending on

the hierarchy in the organization. With negative permissions, only five negative

permissions need to be added to the existing policy with minimal disruption to the

authorized users due to the change of policy. Consider the unstable state when

authorization statements are cryptographically signed and take significant time to be

generated because of these security operations. Negative authorizations are especially

useful in these cases as they would require minimal new authorizations to be specified.

One more way to have the same effect as negative authorizations would be to

utilize a constraints mechanism with each access permission element. However, a

complex parser-generator is required to support access control constraints at a single

permission level.

To support our view for negative authorizations, let us consider an assumed or-

ganization Acme, Inc. If only positive authorizations were supported, then the intro-

duction of a single contract role would be accompanied by the change in all earlier

rows or tuples of the access control elements. There would be need for as many state-

ments to be issued by the administrator to grant positive access to each permanent

role in the organization.

grant principal FooPrincipal "bar" {
permission FooPermission "/foo/bar/-", "read,write";

};



33

If constraints were supported at an individual tuple level, this would require a

complex parser-generator for interpreting, creating and enforcing policy tuples. Such

a tuple would look like:

grant principal FooPrincipal "*" except "contract" {
permission FooPermission "/foo/bar/-", "read,write";

};

However, if negative authorizations were supported, only a single additional tuple

would need to be added to the existing policy in the organization. Such a tuple would

look like:

deny principal FooPrincipal "contract" {
permission FooPermission "/foo/bar/-", "read,write";

};

Note that in addition to these tuples, the constraints and grant-only mechanisms

would also require the retracting of earlier grants present in the system.

Thus, we propose that addition of negative authorizations to the RBAC model

enhances the expressiveness of the model and provides better control over resource

access. In Sections 3.3 and 3.4 we describe our implementation of these negative

permissions for a role-based access control mechanism in Java and a remote autho-

rization mechanism suitable in environments where authorities have access rights

over resources and want to enforce the access control policy of resources in a scalable

manner.

3.3 Negative Permissions

3.3.1 Approach

One of the main implementation considerations was to adhere to Java’s security

mechanism as much as possible. So we required a solution which would be confor-

mant to Java’s security mechanism and be efficient. Following were the options for

implementing negative authorizations.



34

1. Implement additional methods to resources, one per original method, to imply

a negative right or a deny.

2. Implement inverse permission classes to that of the existing ones to imply neg-

ative rights.

3. Maintain two data structures, one for positive authorizations and one for neg-

ative authorizations, and de-conflict the two lists to produce the correct result

on access request.

The first two options were not chosen because Java’s already existing security mecha-

nism would be hampered by these approaches. For example, a Socket Permission

would also have to be modified to have either ∼accept, ∼connect, ∼listen, and

∼resolve in SocketPermission class or we would need a class ∼SocketPermission

that has the original functions signifying negative permissions. As this would re-

quire modifications to many existing Java classes, we chose the option of maintaining

two data structures for authorization policies, one with positive authorizations and

one with negative authorizations. This would minimally impact the existing security

mechanism for Java internal permission classes and have only minor or no changes to

the existing APIs for security.

We chose to utilize the DynamicPolicyProvider class for extending the policy

mechanism, since it provides a dynamic way to grant permissions and has all the

data structures in place to maintain the list of permissions granted. Our negative

permissions requires a list similar to the one that DynamicPolicyProvider already

manages. One of the main implications of this negative list would be to de-conflict

negative permissions with the positive permissions and come up with an assured

answer that is fail-safe.



35

3.3.2 Permission De-confliction

Permission de-confliction is a crucial part of an access control methodology sup-

porting negative permissions. We adopt a fine-grained control in the de-confliction

algorithm with respect to which permission overrides the other. Many contemporary

systems use negative permissions as a means to over-ride positive permissions to treat

the exception cases. This would work fine for a small enterprise where the number of

role-hierarchies are limited. This mechanism is inflexible for large businesses having

a much larger role hierarchy.

Our de-confliction algorithm is based on the premise that the policy administrator

knows the role hierarchy when the policy is loaded into the system. In case of grant-

only access control systems supporting a hierarchy, the hierarchy has to be known as

the permission propagation depends on this hierarchy and hence the premise appears

to be a fair one. For our implementation, we chose this hierarchy to be given in terms

of a file read at the startup by the policy provider. The PolicyEngine maps these

principal types and their hierarchy in a Hashtable to give the numerical value that

resembles their hierarchy. For e.g., for a file containing

org.mcnc.anr.yalta.jaar.OrganizationPrincipal

org.mcnc.anr.yalta.jaar.GroupPrincipal

org.mcnc.anr.yalta.jaar.IdentityPrincipal

OrganizationPrincipal has value 1 (20), GroupPrincipal has value 2 (21), and

IdentityPrincipal has value 4 (22). This numerical value of a principal type effec-

tively represents the priority of that principal. This is in conformance to our earlier

discussion that more specific principals would be given higher priority compared to

generic principals that are higher in the hierarchy. Table 3.1 gives a precise idea of

how these numerical values map for each and every principal type present or absent

in a request for accessing a resource.

Higher the numerical value of the principal set, higher is the priority for deciding

whether access should be given to the requester. Thus, for a particular resource



36

Principal Meaning Value
anr,john john, only when he represents the anr group 3
- ,john john, irrespective of any of the group he is in 2
anr, - anr group member, irrespective of the identity 1
- , - any member of any group in the organization 0

Table 3.1: Hierarchical principal-value table

method, if deny (*, John) and grant (anr, *) are present then access would be denied

to John for that method of the privileged resource. This is in accordance to the theory

that authorizations for most specific roles should take priority over other applicable

authorizations.

3.3.3 Class diagram of Dynamic Policy Provider

We produce here the class diagram of the DynamicPolicyProvider that we modi-

fied to implement negative authorizations. This model helps us provide an abstraction

for implementation in other languages and systems. Along with the class diagram

of PolicyEngine, this would better illustrate the algorithm used in de-confliction of

negative and positive authorizations.

As shown in Figure 3.1, DynamicPolicyProvider is the public implementa-

tion class that a client application needs to communication with. Since this class

implements Java’s policy interface, it is consistent with the existing policy calls

and add news dynamic policy calls to the system. An administrator needs to

call grant(...), deny(...), removeGrant(...), and removeDeny(...) functions in or-

der to add policy statements in the system and getNegativePermissions(...),

and getPositivePermissions(...) to request what permissions are granted to

ProtectionDomains. The Java SecurityManager calls the implies(...) method for

checking whether a permission is allowed to a domain. The addPolicy(...) method

adds a policy specific to a particular ClassLoader. There is also a provision for



37

Figure 3.1: Class diagram of DynamicPolicyProvider



38

Figure 3.2: Class diagram of PolicyEngine

changing the hierarchy of principals so that the user does not need to re-configure

every policy statement when a principal hierarchy changes. For our prototype im-

plementation, this changeHierarchy(...) method is not implemented and can be

subclassed in a system which needs to add its own method for implementing func-

tions on change of hierarchy, such as backing up current policy object, or making

appropriate modifications to the affected policy statements.

As discussed in Section 2.3, DynamicPolicyProvider acts as a consolidator of

Java’s static policy object and SubPolicy objects which actually store the dy-

namic policy information. For each addPolicy(...) function called with a different

ClassLoader as the parameter, there is a SubPolicy object associated with it. This

allows the Java virtual machine to have different policies for each ClassLoader.

The class responsible for confliction resolution for positive and negative permis-

sions is the PolicyEngine class as shown in Figure 3.2. There is a PolicyEngine for

each ClassLoader in a SubPolicy in the system. Each PolicyEngine contains infor-

mation about domains that have the same principal hierarchy. Each PolicyEngine

object stores in a HashMap the principals that a particular requester presents to access

a resource. It also has, in a Hashtable, the priority values of each principal type in

the system. Whenever an access request is to be resolved, the PolicyEngine calls

the checkAccess(...) method to make the decision. Internally,the checkAccess(...)



39

method searches the SubPolicy object to find each applicable positive and negative

permission and stores them sorted in ascending order in a Hashtable with priority

value as the key and a boolean value indicating true or false as the value. Once all the

applicable permission values from both the lists are put into this Hashtable, the last

key’s value gives the result. Optimizations possible to this algorithm are discussed in

Chapter 5.

The above implementation is compatible with the earlier grant-only mechanism,

except the getPermissions(...) method has to be deprecated. getPermissions(...)

method returns a PermissionCollection object that can contain a set of positive-

only or negative-only permissions. Returning only one of these permissions would no

longer carry the correct semantic sense. Hence, getPositivePermissions(...) and

getNegativePermissions(...) functions were added to the DynamicPolicyProvider

to get the set of positive and negative permissions respectively for a particular

ProtectionDomain. We could have implemented a backwards compatible solution

by returning only the positive permissions in the getPermissions(...) method, but

chose not to do so for correct semantics of our implementation.

An analysis of this implementation is presented in Section 3.5.

3.3.4 Local Enforcement Framework

This PolicyEngine and DynamicPolicyProvider were used along with the JAAS

mechanism to provide local enforcement of access control policies at privileged re-

sources. As shown in Figure 3.3, privileged resources enforce the access control mech-

anism in their JVM, which enables them to locally check whether access is allowed or

not. This is in accordance to many existing discretionary access control frameworks

where access control information resides with the privileged resources themselves.

We implemented an AccessManager component to configure and startup the access

control functionalities for the local enforcement mechanism. Later we shall describe

how this same component was extended and utilized to provide a flexible enforcement



40

Privileged Resource

Java Virtual Machine

Access Manager

Policy Administration
GUI component

Dynamic Policy using an

Engine for de-confliction

Enforcement Layer
Authentication and
Authorization API

Security enforcement
provided by

Java

Policy Interface

Figure 3.3: Local enforcement framework

mechanism which can be configured for remote authorization or local authorization.

This AccessManager component has all the requisite configuration for both local and

remote authorization. Thus, privileged resources do not have to be modified in any

way for enforcing the policy locally or remotely.

3.4 Remote Authorization

As discussed in Section 3.1, implementing access control at a remote server in

the presence of overlay services would enable ease in administration and prevent

accidental or minimize intentional abuse by authorities at local resources. This means

an extension to the current Java security mechanism where a client JVM makes remote

calls to a PolicyService.

The primary consideration was to provide this extension as a plug-in to the exist-

ing JAAS mechanism. This plug-in would require only minor configuration changes

to existing applications and would be calling the same API for access control as

done by the JAAS mechanism. An application calls Subject.doAs(...) or its variant

Subject.doAsPrivileged(...) to perform an action on a privileged resource. There

were two options considered for this extension:



41

TargetAEF

ADF

Initiator Submit Access

Request

Decision
Request

Decision

Present Access

Request

Figure 3.4: ISO-10181-3 access control framework

1. Subject.doAs(...) calls SecurityManager.checkRemotePermission(...) in-

stead of SecurityManager.checkPermission(...). This implies that this func-

tion would have to be written in the SecurityManager in Java.

2. Subject.doAs(...) calls SecurityManager.checkPermission(...) but when

Permission’s implies(...) method is called, then this permission makes a

remote call to obtain the authorization decision. This means that we create

a permission PrivilegedPermission that applications must extend for using

remote authorization.

3.4.1 Design

Our remote authorization infrastructure is based on the ISO-10181-3 Access Con-

trol Framework [1], shown in Figure 3.4.

A user, who is the Initiator in this case, tries to perform an operation on a priv-

ileged resource by providing some information to the Access Control Enforcement

Functions (AEF). This information is known as the Access Control Decision Informa-

tion (ADI) in the ISO framework. The AEF makes a call to the the Authorization

Decision Function (ADF) passing the ADI and additional context information needed

for the access decision. The ADF then makes the authorization decision and sends

this decision back to the AEF. If the operation is permitted, the AEF then performs



42

Objects in
SpaceJavaSpace

Policy
Service

Client API calls to Space

(security wrapped )

Jini Service
Invocation

Service Return
value

Primitive API calls

to Space

Figure 3.5: Remote authorization design

the operation on behalf of the initiator.

Figure 3.5 shows an example of how we adhered to the ISO framework for client

communication with the application space. The initiators, in our case, are the clients

that interact with the application space. Application space acts as the AEF and

submits the decision request to the PolicyService which acts as the ADF. To submit

this request, the application space first authenticates the client and then performs the

requisite operations to extract the subject from the certificates (ADI) presented by

the client. The PolicyService checks the enforced policy to obtain the authorization

decision and returns the decision to the application space. The application space then

performs the operation on behalf of the client, if access to the operation is allowed.

Note that here we implemented DynamicPolicyProvider as the policy provider

for our policy enforcement mechanism to dynamically modify the policy state. As

the parameters of remote call to the PolicyService do not conform to Java’s policy

interface, nor is Java’s policy interface available to remote clients, the policy engine

service modifies the parameters and presents them to the DynamicPolicyProvider.

Note that the context information is provided to the ADF by a file loaded at runtime

and the policy rules are provided by an administrative graphical user interface (GUI).

This GUI, known as AccessControlGUI, is described in Section 3.4.4.

The ADI sent by the client could have been sent in accordance with the AznAPI1.

1http://www.opengroup.org/onlinepubs/009609199/toc.pdf



43

However, considering the fact that AznAPI is an API for C based access control

framework and our prototype was built in Java, we chose not to use AznAPI for the

purpose. We could have also made native calls to an underlying C implementation,

but chose not to do so for simplicity.

3.4.2 Implementation

Figure 3.6 shows our implementation model for the remote authorization. We de-

veloped the remote authorization model to help us develop components that would be

loosely coupled with each other. This would provide a flexible authorization scheme

that can be configured as either a remote or a local authorization. One of the other

considerations behind implementing this model was to make the code change required

for remote authorization scheme to be backwards compatible with the local enforce-

ment mechanism that we had developed as explained in the Section 3.3.

As shown in the figure, privileged resources are configured by the AccessManager

component to use PermissionChecker for communicating with the PolicyService.

PolicyService itself utilizes the AccessManager to enforce the dynamic role-based

access control as discussed in Section 3.3.4. The policy authorization statements are

enforced by the PolicyHandler components. The policy administration component

puts the positive or negative authorizations to be signed by the Policy Authority

into a space between the authority and the Policy Decision Point (PDP). These

authorizations are then signed by the policy authority and put back to this same

shared space for enforcement. This mechanism serves the following purpose:

• Allows only legitimate entries to be enforced by the PolicyService.

• Allows the shared space to serve as the central repository for policy tuples.

• Provides integrity by enforcing only policy tuples signed by the Policy

Authority.



44

Policy Decision Point

Policy Administration
GUI component

Enforcement Layer

Dynamic Policy using
an Engine for de-

confliction

Authentication and
Authorization API

Security provided by
Prog. Language

Policy Handler

Policy Service

Shared Memory for
Policy Objects

(a Service)

Policy Authority

Policy Client

Privileged Resources

Access Manager

Policy Client

Privileged Resources

Access Manager

Access Manager

Figure 3.6: Remote authorization architecture



45

We implemented the PermissionChecker components to be able to inter-

act with PolicyService. PolicyService and privileged resources both utilize

the AccessManager component. AccessManager is the only class that needs to

be configured for (and aware of) where the authorization mechanism is present.

The PolicyService is a Jini service that utilizes the AccessManager class,

which takes care of enforcing security policy. This is done by utilizing the

DynamicPolicyProvider class along with JAAS implementation for user-centric ac-

cess control as explained in Section 3.3. This model lets us migrate from local policy

enforcement at privileged resources to the remote authorization scheme with no code-

level changes to the negative authorization scheme policy enforcement points.

3.4.3 Architecture Scalability

In accordance with the other components in Yalta, we required the policy en-

forcement mechanism to be scalable and survivable. Figures 3.7 and 3.8 show the

scalability of the mechanism. Here, scalability is achieved with respect to two dimen-

sions: depth and width.

Figure 3.7 shows how the remote authorization architecture is scalable with re-

spect to depth of the system, the number of PolicyService components in the sys-

tem. One or more intermediate PolicyService components are configured to contact

higher level PolicyService components for their authorization decisions. This serves

as delegation of the authorization mechanism. The AccessManager component can

be configured at runtime by the PolicyService component to configure whether

the policy will be enforced locally or authorization decisions should be obtained by

contacting another PolicyService component located higher in the hierarchy.

Figure 3.8 shows how the remote authorization architecture is scalable with respect

to width of the system, the number of domain components in the system. The multi-

domain architecture here implies the various domains of authority that might be

present in an environment such as a dynamic coalition. For example, consider a



46

Policy Decision Point

Access Control GUI

Enforcement Layer

Dynamic Policy using
an Engine for de-

confliction

JAAS

Java Security

Policy Handler
(Jini Client)

Policy Service
(Jini Service)

JavaSpaces
(Jini Service)

Policy Authority

Permission
Checker

Application Space

Access Manager

Permission
Checker

Application Space

Access Manager

Access Manager

Policy Service
(Jini Service)

Access Manager

Permission
Checker

Figure 3.7: Scalable authorization: Hierarchy support



47

Application Space

JavaSpaces
(Jini Service)

Policy Authority

Permission
Checker

Application Space

Access Manager

Permission
Checker

Application Space

Access Manager

Access Manager

Permission
Checker

Policy Decision Point

Access Control GUI

Enforcement Layer

Dynamic Policy using
an Engine for de-

confliction

JAAS

Java Security

Policy Handler
(Jini Client)

Policy Service
(Jini Service)

Access Manager

Policy Decision Point

Access Control GUI

Enforcement Layer

Dynamic Policy using

an Engine for de-
confliction

JAAS

Java Security

Policy Handler
(Jini Client)

Policy Service
(Jini Service)

Access Manager

Figure 3.8: Scalable authorization: Multi-domain support



48

dynamic coalition of three countries that are allies during a war, implying three

domains, in the simplest case: one domain per country. Each country would like to

implement authorization mechanism for resources in their domains.

One or more PermissionChecker components can be configured to contact the

PolicyService component from their domains for authorization decisions. In addi-

tion, many such PolicyService components can be registered with the shared policy

space. These PolicyService components may or may not be from the same domain

of authority. If there were multiple PolicyService components from the same do-

main, they would increase the fault tolerance in the system as downtime of any such

component would mean that clients could contact another PolicyService in the

same domain. If there were PolicyService components from the different domains,

they would make the system scalable to include multiple domains. Such a scalable

multiple-domain architecture is a core requirement of coalition environments [35].

Multiple PolicyService components can register with the higher level

PolicyService components, and multiple higher PolicyService components can

register to receive notification from the shared policy space to create a very powerful

policy distribution and enforcement architecture required by mission critical applica-

tions.

3.4.4 Policy Administration

Policy administration takes place at the AccessManager service and has the ben-

efit of not having to pass the policies to all the resources. This administration is

handled by a GUI that presents a graphical interface to put policy signing requests

into the shared policy space and obtaining the signed policies from the space on

receipt of a notification from the space. The AccessManager interacts with the

DynamicPolicyProvider class to ensure that these signed policies are enforced by

the Policy Decision Point. The AccessManager has a component that listens to

access check requests containing ADI sent by the PermissionCheckers from the ap-



49

Figure 3.9: Policy administration interface

plication space and responds after executing the request on the user’s behalf. All the

interactions are done via RMI over SSL so that confidentiality and integrity is main-

tained. PolicyService is a Jini service and hence application spaces can discover

the service and request access checks. Multiple domains are possible by specifying

the domain in the startup script, which makes the authorization mechanism scalable.

Policy rules are obtained from the PKI space, which is where the Policy

Authority of the distributed system publishes the signed policies. Since this is a

JavaSpace, the PolicyHandler component started by the AccessManager registers

with the JavaSpace to obtain notifications on new policy statements written into



50

the space. The PolicyHandler fetches the policy whenever it receives a notification

about a new policy entry for its domain in the shared space. This notification service

is a standard Jini service and is utilized so that for each authorization call, the Policy

Decision Point (PDP) does not have to seek for any updates into the space regarding

the policy. The remote procedure call between the client and the PolicyService and

between the PolicyHandler and space is by RMI over SSL to provide confidentiality

and integrity.

Figure 3.9 shows the administrative component of this remote authorization

scheme. We extract two attributes from the identity certificate of the requester:

GroupPrincipal and IdentityPrincipal. The GUI enables one to grant, deny,

revoke-grant, and revoke-deny access to subjects based on their principals. Two types

of actions are currently included in the GUI: the JavaSpace operation and the Socket

connection action. JavaSpace operation resembles any operation that a user intends

to make on one or more entries in JavaSpace. Socket connection action represents

the connection of the user to the JavaSpace. Socket connection check is sort of a first

wall of defense against illegitimate users, while the JavaSpace action is more specific

to a particular object, known as an Entry, or group of such objects.

This administrative GUI also allows the administrator to see the set of permissions

applied by the GUI sorted in chronological order. Figure 3.10 is a snapshot of the

access control elements applied by an administrator and is useful in policy logging

purposes. This same GUI is used for administration in the case of local enforcement

framework. The configuration details are managed by the AccessManager component

and thus enables component re-use.



51

Figure 3.10: Policy logging

3.5 Implementation Analysis

3.5.1 Merits

We have built a backwards compatible solution to utilizing negative authorizations

with minimal changes required in the security classes of Java language.

A policy administrator can set up threshold levels to serve as warning mechanisms

when the access check de-confliction value between a grant authorization and a deny

authorization, described in Section 3.3.2, is numerically close. This would serve as

an aid to the audit trail process where the authorities determine what authorizations

were granted and denied by the system. Such a threshold level warning mechanism

would aid the auditor to determine any holes in the policy enforced by the system.

With minor modifications, our implementation can also cater to the separation of

duty principle at the administrative interface, in the absence of a constraints mech-

anisms in the language itself. For example, Java does not provide constraints in its

access control framework. Instead of hard-coding the separation of duty policy for

permissions in the application code, we can develop an input to the administrator

interface for conflicting permissions. When a positive authorization is added to a par-

ticular role, the corresponding negative authorization(s) for separation of duty can

be automatically issued by the system and vice-versa.

Remote authorization, along with negative permissions, makes the authorization



52

process in the RBAC system scalable. Multi-domain RBAC systems can be realized

using our approach, so it scales well to large-scale environments such as dynamic

coalitions. Our remote authorization implementation is flexible for authorities to

determine whether they want to use remote authorization or local authorization at

startup instead of being bound by the remote authorization mechanism or local en-

forcement only.

We also support plugging in permission classes into the Java runtime to utilize

this remote framework for multiple permission classes. This would be useful in cases

of many different types of authorizations to be supported by the system.

3.5.2 Limitations

Caution should be observed while utilizing negative authorizations. A slight over-

look in policy administration might lead to unnecessary denial of service to some

authorized users. For example, an administrator adds a negative permission to a

privileged resource for a junior role in the hierarchy and then adds a senior role that

inherits all privileges from this junior role. An overlook on the part of the admin-

istrator might cause an unnecessary denial or service for a user in the senior role,

if the senior role was supposed to have the access rights to that privileged resource.

Consider the example given in Section 3.2. If one more role is added which is similar

to a contract professional role, then it might lead to a violation of confidentiality of

the system if the administrator fails to add denial privileges to the new role. Thus,

negative authorizations should be carefully used and implemented ideally to cater to

exception cases only.

The above two limitations are inherent due to the negative authorizations model

and are not limitations of our implementation. We derive the role information for

users through a monolithic architecture [34] where role information is embedded in

the identity certificate of the user. This tight coupling between users and their roles

was acceptable for our implementation, as our focus was implementing the denial



53

mechanism and remote authorization to demonstrate scalability of our approach.



54

Chapter 4

Related Work

Role-based access control has been studied extensively and there are several ex-

cellent overviews of this methodology [38, 15].

One of the first solutions for utilizing negative rights in access control systems

uses negative rights to signify explicit denial of access [42]. This system uses several

de-confliction rules to reach the conclusion regarding the stronger authorization. For

objects, inheritance relationships in the system is utilized for deriving access rights.

For permissions, include and imply relationships are utilized for deciding whether the

permission matches. An include relationship is the one that links a permission to

another because of a containment relationship between permissions. For example,

the rights of a particular workflow application include the rights of all the individual

work required for that workflow. The imply relationship is used when a right for a

stronger operation implies the right for a weaker operation. For example, a right to

write to a file implies a right to append to that file. De-conflictions between include

and imply relationships are resolved by giving preference to imply relationships as

they are more tightly related to the system semantics, while the include relationship

is just a grouping of rights used for ease of specification.

For subjects, the take and have relationships are utilized for deciding whether the

permission matches. A take relationship is similar to the inheritance principle applied



55

to objects. A have relationship is the one in which the user has some specific privileges

of roles that he is performing. In case of conflicts, the take relationship is used first

as have contains the rights that the user obtains indirectly from other users or roles

that he may or may not take. Priorities for de-confliction rules are determined based

on whatever is more efficient for the model. For example, a system implementing

the access control using access control lists would use de-confliction based on object

dimension. Our approach is a generic implementation of the subject dimension in

their model. We have implemented the mechanism in a more transparent manner to

applications, as our approach is based on the underlying security mechanism utilized

in a widely used language. Any applications can make use of our mechanism without

changes to their code.

Negative and positive authorizations via the use of strong and weak authorizations

concept has also be studied [6]. This research caters specifically to database autho-

rizations, though it can be applied to other contexts with minimal changes. The

classification of weak and strong authorization helps de-confliction of the authoriza-

tion rule. Any strong authorization over-rules the weak authorization, and only one

strong authorization is allowed for a particular access permission. We do not utilize

this concept of strong and weak authorizations as these can be sometimes overwhelm-

ing for the administrator to specify correctly, considering the fact that these strong

and weak authorizations may be specified at any level in the role hierarchy.

The Andrew File System (AFS) [39] and Microsoft SQL Server 2000 [40] have

negative permissions but those are simplistic cases where group and user identities are

present. These systems have a model that implements the group based access control

with negative permissions with no support for hierarchies in groups and the denial

statements override grant statements. We permit the denial concept to hierarchical

roles with an algorithm to de-conflict the negative and positive permissions.

Apache HTTP server1 allows a more flexible mechanism by utilizing an Order

1http://httpd.apache.org



56

directive that specifies the order in which Allow, and Deny directives apply [11].

Accordingly one can place the directive value as:

• DENY, ALLOW: This represents an open policy where any client that does not

match any deny directive or matches an allow directive is granted access.

• ALLOW, DENY: This represents a closed policy where any client that does not

match any allow directive or matches a deny directive is denied access.

• Mutual-failure: This represents a restrictive policy in which only clients that

do not match any deny directive and match an allow directive are granted access.

These options signify either a highly closed or a highly open policy, whereas our

mechanism supports more fine-grained control over the authorization, depending on

the hierarchy level at which the grant/deny authorizations are present.

Coalition environments, which require collaborative effort on the part of partici-

pating organizations, often require the system to enforce access control decisions on

users based on teams that the user participates in. For such environments, other

higher level models such as Team-based access control (TMAC) [49] are proposed.

Such environments need a flexible model that includes role-based permissions for ob-

jects, yet requires finer controls such as identity-based controls on individual users in

certain roles and individual object instances. One such example for fine-graining is

a clinical policy stating that no clinical staff should be allowed to access a patient’s

records unless they were providing care for that patient [49]. Such a requirement

can be met by the RBAC model, although it is cumbersome at best. The negative

authorizations model would also not pose any significant advantage or disadvantage

for such a requirement.

Access control constraints [2] are a means to providing flexibility in the system

for catering to exception cases. However, these constraints come at some implemen-

tation complexity. For resources not requiring a high level of sophistication, these



57

constraints can be quite overwhelming; they increase the complexity of the parser-

generator required to read and modify the access control elements or rows that govern

access to a resource. Consider the case of exceptions to role based access privilege

where a user is allowed to access a resource not based on a role but on his authority

in the organization. Or consider that a user is not allowed to access a particular

resource in spite of his being in an authorized role for that resource due to his earlier

abuse of that resource. These can be either expressed by constraints or by negative

authorizations. For systems requiring a simple mechanism to manage access control

system catering to these exception cases, an RBAC system with negative authoriza-

tions should be an effective means of administration. These negative authorizations

can also complement constraints in more sophisticated systems. Constraints gener-

ally act as pre-conditions to the access control rules, while negative authorizations

are actually implemented as tuples or elements of the access control policy.

Akenti [26] is an authorization infrastructure for widely distributed resources and

utilizes X.509 attribute certificates for access control. Akenti’s gateway (AEF) au-

thenticates via the identity certificate of clients and passes the identity information in

the access request sent to a Policy Engine (ADF) for evaluation. The ADF extracts

the attribute certificates from the public directories and evaluates them against the

use-conditions given by different domain of authorities to derive at an access deci-

sion. Due to the search time for certificates and their validation, this process might

be time-constrained. We enforce the use-condition or policy statements a priori at

our PolicyService component. In our implementation, the AEF extracts the role

information from the certificate presented by the clients and passes them to the ADF.

Therefore, the access control decision by the ADF is not time-constrained. A client

might cause many access control requests, one for each resource it wants, to their

ADF component. Thus, it may be beneficial in many cases to extract the attribute

information from the certificates at the AEF rather than the ADF in some cases. For

such cases, our implementation might prove to be beneficial. Our mechanism also



58

provides the benefit that the client can activate whatever attribute he wants, rather

than having a publicly availably directory of attribute certificates. Denial-of-service

attacks due to non-availability of these directories is a major threat in the Akenti

approach. However, a downside to our approach might be the requirement to im-

plement a revocation scheme for certificates. This revocation scheme, for attribute

certificates, is not required for the Akenti approach.

The Secure Virtual Enclaves (SVE) [41] project has concentrated on many policy

issues, such as accomodating different role hierarchies, multiple dynamic coalitions,

and type enforcement, which were beyond the scope of our work. SVE has an autho-

rization model similar to ours. However, the scalability issue for authorization model

was not addressed by the project. We have focussed on scalability of our implemen-

tation and have provided a scalable and flexible authorization mechanism that can

be implemented at the discretion of the domain authorities. Our mechanism can be

easily extended to achieve scalability with respect to depth of a domain hierarchy via

use of multi-tier client-server access resolution.

SVE does not support policies that are are applicable across all domains. In

addition to the local domain policies, many coalitions would require an infrastructure

that supports such cross-domain policies. We provide both domain-wide and cross-

domain policies via a hierarchical approach containing shared coalition authority [43]

above domains. This shared coalition authority performs the task of reviewing and

granting such domain-wide and cross-domain policies. SVE lacks an infrastructure

to support cross-domain policies efficiently.

Access Manager [24] is a product that implements a remote authorization model

similar to ours. They also utilize the JAAS framework and extend it to include

remote authorizations. This remote authorization framework consists of the Resource

Manager, Authorization Server and the Policy Server. A Resource Manager makes

calls to a pre-configured Authorization Server that takes the access control decision

based on the policy present at the Policy Server. The Access Manager API provides



59

a permission class that establishes an SSL-protected socket in its static initializer to

talk to Access Manager.

Our implementation has several unique features like negative authorizations, scal-

able framework and multi-domain infrastructure. Our implementation is very flexible,

in the sense that Policy Enforcement Points can determine whether they want to use

remote authorization or local authorization at startup instead of being bound by the

remote authorization mechanism or local enforcement only. We also support plugging

several Permission classes into the Java runtime environment by extension of our

PrivilegedPermission. Such a mechanism allows flexibility as customized autho-

rization classes can be built to utilize remote authorization.



60

Chapter 5

Conclusion

5.1 Contributions

This thesis proposed utilizing negative authorizations to cater to exceptions in

access control and provided a case for including negative authorizations in the RBAC

model. We showed a reference implementation of an RBAC system utilizing negative

authorizations in a widely accepted programming language with minimal changes and

requiring no changes to existing application code. Because we have implemented our

negative authorizations scheme into a widely used programming language, and in an

application transparent manner, our scheme can be utilized by all resources wanting

to utilize dynamic administration of security policies.

We demonstrated the design and implementation of a scalable RBAC implementa-

tion that can be used in dynamic large scale environments. We showed the scalability

of our implementation with respect to the depth of the environment and the support

for multiple domains in the environment. We developed a flexible architecture to

configure the authorization scheme depending on the requirements of such an envi-

ronment. Our remote authorization scheme has been implemented as a plug-in for

an existing application independent authorization framework (JAAS) and can be uti-

lized by all resources using the JAAS framework for their authorization. We hope our



61

remote authorization implementation leads to more research in terms of scalability of

the RBAC environment and our abstraction model helps guide towards more scalable

architectures.

We successfully demonstrated the implementation of the negative authorizations

scheme and scalability of remote authorization architecture at the third DARPA

Information Survivability Conference and Exposition (DISCEX III) [43].

5.2 Future Work

We have currently implemented only the RBAC1 level of the RBAC model. We

utilize the SSL handshake as the session activation mechanism and bind role infor-

mation within the X.509 identity certificates. User-role assignment is done after the

user X.509 certificate is validated, when we extract the role information from the

certificate. Role hierarchies are supported by specifying the hierarchy at runtime via

a static file. We intend to investigate more about complementing negative autho-

rizations with constraints, and supporting a more flexible mechanism to derive role

information after user authentication.

We have implemented negative rights and de-conflictions for only one dimension

of the access control model: subjects. We expect similar work be done in areas of

inheritance models for permission rights and objects. However, another important

question to be answered would be in what order should the different dimensions of

the access control model be considered [42].

As discussed in Section 3.4.3, our system can be configured to delegate authoriza-

tion decisions to higher levels in the hierarchy or take authorization decisions locally.

This mechanism can be extended to selectively delegate authorization decisions de-

pending on various parameters, such as sensitivity or granularity of the permission.

This would require a more sophisticated AccessManager component that can de-

termine which authorizations have to be delegated and which have to be enforced



62

locally. This would also require a sophisticated policy distribution hierarchy that can

selectively distribute the required policy tuples into PolicyHandler for enforcement.

The DynamicPolicyProvider component can be extended to dynamically include

changes in the role hierarchy. This might be a requirement for many dynamic sys-

tems where the role hierarchies might change. The current algorithm for de-confliction

between negative and positive authorizations is less sophisticated where all the ap-

plicable positive and negative authorizations are checked to derive the priority value

of the authorization. This mechanism can be extended to include more sophisticated

algorithms such as keeping the authorizations lists sorted and alternate the checking

of positive and negative list tuples, or indexing these authorization lists as per the

hierarchy of roles for more efficient lookup and results.

The existing implementation can be extended in several ways to adhere to existing

standards such as utilizing X.509 attribute certificates [13] for signed policy objects

and utilizing SAML [21] language for the access control request-response communi-

cation.

We plan to study the use of negative certificates [22] for implementing negative

authorizations and discuss how our implementation complements their model for as-

signing roles in open and distributed environments.



63

Bibliography

[1] ISO/IEC 10181-3: Security frameworks for open systems: Access control frame-

work, 1996.

[2] Gail-Joon Ahn and Ravi Sandhu. Role-based authorization constraints spec-

ification. ACM Transactions on Information and System Security (TISSEC),

3(4):207–226, November 2000.

[3] Yair Amir, Giuseppe Ateniese, Damian Hasse, Yongdae Kim, Cristina Nita-

Rotaru, Theo Schlossnagle, John Schultz, Jonathan Stanton, and Gene Tsudik.

Secure group communication in asynchronous networks with failures: Integration

and experiments. In The 20th International Conference on Distributed Computing

Systems (ICDCS), April 2000.

[4] Anne Anderson. JavaTM access control mechanisms. Technical Report TR-2002-

108, Sun Microsystems, March 2002.

[5] Elliot D. Bell and Leonard J. LaPadula. Secure computer systems: Mathematical

foundations. Technical Report 2547, MITRE, March 1973.

[6] Elisa Bertino, Sushil Jajodia, and Pierangela Samarati. A flexible authoriza-

tion mechanism for relational data management systems. ACM Transactions on

Information Systems (TOIS), 17(2):101–140, April 1999.

[7] Reinhardt A. Botha and Jan H.P. Eloff. Designing role hierarchies for access con-



64

trol in workflow systems. In 25th Annual International Computer Software and

Applications Conference (COMPSAC), pages 117–122. IEEE Computer Society

Press, October 2001.

[8] David F.C. Brewer and Michael J. Nash. The Chinese wall security policy.

In IEEE Symposium on Security and Privacy, pages 206–214. IEEE Computer

Society Press, May 1989.

[9] Gregory T. Byrd, Fengmin Gong, Chandramouli Sargor, and Timothy J. Smith.

Yalta: A secure collaborative space for dynamic coalitions. In IEEE Workshop

on Information Assurance and Security, pages 30–37. IEEE Computer Society

Press, 2001.

[10] Eve Cohen, Roshan K. Thomas, William Winsborough, and Deborah Shands.

Models for coalition-based access control (CBAC). In 7th ACM Symposium on

Access Control Models and Technologies (SACMAT), pages 97–106. ACM Press,

June 2002.

[11] Sabrina De Capitani di Vimerati, Stefano Paraboschi, and Pierangela Samarati.

Access control: principles and solutions. In Software – Practice and Experience,

volume 33, pages 397–421, April 2003.

[12] T. Dierks and C. Allen. RFC 2246: The TLS protocol version 1, January 1999.

[13] S. Farrell and R. Housley. RFC 3281: An internet attribute certificate profile for

authorization, April 2002.

[14] David F. Ferraiolo and Richard Kuhn. Role-based access controls. In 15th NIST-

NCSC National Computer Security Conference, pages 554–563, 1992.

[15] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ra-

maswamy Chandramouli. Proposed NIST standard for role-based access control.



65

ACM Transactions on Information and System Security (TISSEC), 4(3):224–

274, August 2001.

[16] Eric Freudenthal, Tracy Pesin, Lawrence Port, Edward Keenan, and Vijay

Karamcheti. dRBAC: Distributed role-based access control for dynamic coalition

environments. Technical Report TR2001-819, New York University, 2001.

[17] Luigi Giuri. Role-based access control in Java. In Proceedings of the 3rd ACM

Workshop on Role-based access control, pages 91–100. ACM Press, October 1998.

[18] Virgil D. Gligor, Serban I. Gavrila, and David Ferraiolo. On the formal definition

of separation-of-duty policies and their composition. In IEEE Symposium on

Security and Privacy, pages 172–183. IEEE Computer Society Press, May 1998.

[19] Li Gong. Inside Java 2 Platform Security: Architecture, API Design, and Im-

plementation. AddisonWesley, June 1999.

[20] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language

Specification, Second Edition. Sun Microsystems, April 2000.

[21] Phillip Hallam-Baker and Eve Maler. Assertions and protocol for the OASIS

Security Assertion Markup Language (SAML), November 2002.

[22] Amir Herzberg, Yosi Mass, Joris Mihaeli, Dalit Naor, and Yiftach Ravid. Access

control meets public key infrastructure, or: Assigning roles to strangers. In IEEE

Symposium on Security and Privacy, pages 2–14. IEEE Computer Society Press,

May 2000.

[23] Thomas Hildmann and Jrg Barholdt. Managing trust between collaborating

companies using outsourced role based access control. In Proceedings of the

4th ACM Workshop on Role-based access control, pages 105–111. ACM Press,

October 1999.



66

[24] IBM Corporation. IBM Tivoli Access Manager: Authorization Java Classes

Developers Reference, April 2002.

[25] Trent Jaeger and Atul Prakash. Requirements of role-based access control for

collaborative systems. In Proceedings of the 1st ACM Workshop on Role-based

access control, page 16. ACM Press, 1996.

[26] William Johnston, Srilekha Mudumbai, and Mary Thompson. Authorization

and attribute certificates for widely distributed access control. In 7th IEEE

International Workshops on Enabling Technologies: Infrastructure for Collabo-

rative Enterprises (WET’ICE), pages 340–345. IEEE Computer Society Press,

June 1998.

[27] Himanshu Khurana, Virgil Gligor, and John Linn. Reasoning about joint admin-

istration of access policies for coalition resources. In 22nd International Confer-

ence on Distributed Computing Systems (ICDCS), pages 429–438. IEEE Com-

puter Society Press, July 2002.

[28] Himanshu Khurana and Virgil D. Gligor. Review and revocation of access priv-

ileges distributed with PKI certificates. In Security Protocols, Lecture Notes

in Computer Science (LNCS), volume 2133, pages 100–112. Springer-Verlag,

September 2001.

[29] John Kohl and Clifford Neuman. RFC 1510: The Kerberos Network Authenti-

cation Service V5, September 1993.

[30] John McLean. Security models. In Encyclopedia of Software Engineering. John

Wiley & Sons, 1994.

[31] SangYeob Na and SuhHyun Cheon. Role delegation in role-based access control.

In Proceedings of the 5th ACM Workshop on Role-based access control, pages

39–44. ACM Press, July 2000.



67

[32] Sylvia Osborn, Ravi Sandhu, and Qamar Munawer. Configuring role-based access

control to enforce mandatory and discretionary access control policies. ACM

Transactions on Information and System Security (TISSEC), 3(2):85–106, May

2000.

[33] Jaehong Park and Ravi Sandhu. Towards usage control models: Beyond tra-

ditional access control. In 7th ACM Symposium on Access Control Models and

Technologies (SACMAT), pages 57–64. ACM Press, June 2002.

[34] Joon S. Park and Ravi S. Sandhu. Binding identities and attributes using dig-

itally signed certificates. In 16th Annual Computer Security Applications Con-

ference (ACSAC’00), pages 120–127. IEEE Computer Society Press, December

2000.

[35] Charles E. Phillips, Jr., T.C. Ting, and Steven A. Demurjian. Information shar-

ing and security in dynamic coalitions. In 7th ACM Symposium on Access Control

Models and Technologies (SACMAT), pages 87–96. ACM Press, June 2002.

[36] Jerome H. Saltzer and Michael D. Schroeder. The protection of information in

computer systems. In Proceedings of the IEEE, volume 63, pages 1278–1308,

1975.

[37] Ravi Sandhu. Lattice-based access control models. IEEE Computer, 26(11):9–19,

November 1993.

[38] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.

Role-based access control models. IEEE Computer, 29(2):38–47, February 1996.

[39] Mahadev Satyanarayanan. Scalable, secure, and highly available distributed file

access. Computer, 23(5):9–18, 20–21, 1990.

[40] Saskia Schott, Jerry Spivey, Jim Skinner, Cathan Cook, and Allan Hirt. Mi-

crosoft SQL Server 2000 Operations Guide. Microsoft Press, July 2002.



68

[41] Deborah Shands, Richard Yee, Jay Jacobs, and E. John Sebes. Secure virtual

enclaves: Supporting coalition use of distributed application technologies. ACM

Transactions on Information and System Security (TISSEC), 4(2):103–133, May

2001.

[42] HongHai Shen and Prasun Dewan. Access control for collaborative environments.

In ACM Conference on Computer-Supported Cooperative Work (CSCW), pages

51–58. ACM Press, November 1992.

[43] Timothy J. Smith, Gregory T. Byrd, Xiaoyong Wu, Hongjie Xin, Krithiga

Thangavelu, Rong Wang, and Arpan Shah. Dynamic PKI and secure tuplespaces

for distributed coalitions. In 3rd DARPA Information Survivability Conference

and Exposition (DISCEX III), April 2003.

[44] Sun Microsystems. Java Remote Method Invocation Specification Rev. 1.7, De-

cember 1999.

[45] Sun Microsystems. JavaSpaces Specification Version 1.0, 1999.

[46] Sun Microsystems. Jini Architecture Specification Version 1.1, October 2000.

[47] Sun Microsystems. JavaTM 2 SDK, Standard Edition Documentation, 2002.

[48] Sun Microsystems. Davis Early Access Draft Specifications Release, February

2003.

[49] Roshan K. Thomas. Team-based access control (TMAC): A primitive for apply-

ing role-based access controls in collaborative environments. In Proceedings of

the 2nd ACM Workshop on Role-based access control, pages 13–19. ACM Press,

November 1997.


	List of Figures
	List of Tables
	Introduction
	Study
	Implementation
	Outline

	Background
	Access Control Models
	Discretionary Access Control (DAC)
	Mandatory Access Control (MAC)
	Role-based Access Control (RBAC)
	RBAC Levels


	Java Security Mechanism
	Java Policy
	Java Authentication and Authorization Services (JAAS)
	Java Security Classes and API

	Dynamic Policy Provider
	Access Check Algorithm

	Distributed Computing Technology in Java
	RMI
	Jini

	Implementation Infrastructure (Yalta)

	Implementation
	Requirements for Access Control In Yalta
	Extending the RBAC model
	Negative Permissions
	Approach
	Permission De-confliction
	Class diagram of Dynamic Policy Provider
	Local Enforcement Framework

	Remote Authorization
	Design
	Implementation
	Architecture Scalability
	Policy Administration

	Implementation Analysis
	Merits
	Limitations


	Related Work
	Conclusion
	Contributions
	Future Work

	Bibliography

